- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某生物探测器在水中逆流行进时,所消耗的能量为E=cvnT,其中v为行进时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km.
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
保护环境,防治环境污染越来越得到人们的重视,某企业在现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
.现为了减少大气污染,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后,当日产量
时,每日生产总成本
.
(1)求
的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少吨时,每吨产品的利润最大,最大利润为多少万元?






(1)求

(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少吨时,每吨产品的利润最大,最大利润为多少万元?
某村充分利用自身资源,大力发展养殖业以增加收入.计划共投入80万元,全部用于甲、乙两个项目,要求每个项目至少要投入20万元在对市场进行调研时发现甲项目的收益
与投入x(单位:万元)满足
,乙项目的收益
与投入x(单位:万元)满足
.
(1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;
(2)问甲、乙两个项目各投入多少万元时,总收益最大?




(1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;
(2)问甲、乙两个项目各投入多少万元时,总收益最大?
已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度
(单位:℃)对某种鸡的时段产蛋量
(单位:
)的影响.为此,该企业收集了7个鸡舍的时段控制温度
和产蛋量
的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
其中
,
.

(1)根据散点图判断,
与
哪一个更适宜作为该种鸡的时段产蛋量
关于鸡舍时段控制温度
的回归方程类型?(给判断即可,不必说明理由)
(2)若用
作为回归方程模型,根据表中数据,求出
关于
的回归方程;
(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
②参考值.





![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
17.4 | 82.3 | 3.6 | 140 | 9.7 | 2935.1 | 35 |
其中



(1)根据散点图判断,




(2)若用



(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据



②参考值.
![]() | ![]() | ![]() | ![]() | ![]() |
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
某投资公司计划投资
、
两种金融产品,根据市场调查与预测,
产品的利润
与投资量x成正比例,其关系如图1,
产品的利润
与投资量x的算术平方根成正比例,其关系如图2;(利润与投资量单位:万元)


(1)分别将
、
两产品的利润表示为投资量的函数关系式;
(2)该公司已有20万元资金,并全部投入
、
两种产品中,问:怎样分配这20万元投资,才能使公司获得最大利润?其最大利润为多少万元?








(1)分别将


(2)该公司已有20万元资金,并全部投入


已知某民族品牌手机生产商为迎合市场需求,每年都会研发推出一款新型号手机.该公司现研发了一款新型智能手机并投入生产,生产这款手机的月固定成本为80万元,每生产1千台,须另投入27万元,设该公司每月生产
千台并能全部销售完,每1千台的销售收入为
万元,且
.为更好推广该产品,手机生产商每月还支付各类广告费用20万元.
(Ⅰ)写出月利润
(万元)关于月产量
(千台)的函数解析式;
(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?



(Ⅰ)写出月利润


(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?
上海市为抑制房价,2011年准备新建经济适用房800万
,解决中低收入家庭的住房问题.设年平均增长率为
,设2014年新建经济住房面积为
,则
关于
的函数是( )





A.![]() | B.![]() |
C.![]() | D.![]() |
某企业计划投资生产甲、乙两种产品,根据长期收益率市场预测,投资生产甲产品的利润与投资额成正比,投资生产乙产品的利润与投资额的算术平方根成正比,已知投资1万元时,甲、乙两类产品的利润分别为0.125万元和0.5万元.
(1)分别写出两类产品的利润与投资额
的函数关系式;
(2)该企业有100万元资金,全部用于生产甲、乙产品,问怎样分配资金能使得利润之和最大,最大利润为多少万元?
(1)分别写出两类产品的利润与投资额

(2)该企业有100万元资金,全部用于生产甲、乙产品,问怎样分配资金能使得利润之和最大,最大利润为多少万元?
美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的
,
两种芯片都已经获得成功.该公司研发芯片已经耗费资金
千万元,现在准备投入资金进行生产.经市场调查与预测,生产
芯片的毛收入与投入的资金成正比,已知每投入
千万元,公司获得毛收入
千万元;生产
芯片的毛收入
(千万元)与投入的资金
(千万元)的函数关系为
,其图像如图所示.

(1)试分别求出生产
,
两种芯片的毛收入
(千万元)与投入资金
(千万元)的函数关系式;
(2)现在公司准备投入
亿元资金同时生产
,
两种芯片,求可以获得的最大利润是多少.











(1)试分别求出生产




(2)现在公司准备投入



某商人购货,每件货物的进价已按原价a扣去25%,他希望对货物定一个新价,以便按新价让利20%销售后仍可获售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式是_____.