- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t(百件)时,销售所得的收入为万元.
(1)该公司这种产品的年生产量为x百件,生产并销售这种产品得到的利润为当年产量x的函数f(x),求f(x);
(2)当该公司的年产量为多大时当年所获得的利润最大.
某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )
A.200副 | B.400副 |
C.600副 | D.800副 |
某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:
请根据以上数据分析,这个经营部怎样定价才能获得最大利润?
销售单价/元 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
日均销售量/桶 | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
请根据以上数据分析,这个经营部怎样定价才能获得最大利润?
“红豆生南国,春来发几枝?”下图给出了红豆生长时间t(月)与枝数y的散点图,那么红豆的枝数与生长时间的关系用下列哪个函数模型拟合最好?( )
A.指数函数y=2t | B.对数函数y=log2t |
C.幂函数y=t3 | D.二次函数y=2t2 |
某市的房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )
A.600元 | B.50﹪ | C.![]() | D.![]() |
某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台. 现销售给A地10台,B地8台. 已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.
(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;
(2)若总运费不超过9 000元,问共有几种调运方案;
(3)求出总运费最低的调运方案及最低的费用.
(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;
(2)若总运费不超过9 000元,问共有几种调运方案;
(3)求出总运费最低的调运方案及最低的费用.
盐化某厂决定采用以下方式对某块盐池进行开采:每天开采的量比上一天减少
,10天后总量变为原来的一半,为了维持生态平衡,剩余总量至少要保留原来的
,已知到今天为止,剩余的总量是原来的
.
(1)求
的值;
(2)到今天为止,工厂已经开采了几天?
(3)今后最多还能再开采多少天?



(1)求

(2)到今天为止,工厂已经开采了几天?
(3)今后最多还能再开采多少天?
家用冰箱制冷使用的氟化物,释放后破坏了大气上层的臭氧层.臭氧含量
呈指数函数型变化,满足关系式
,其中
是臭氧的初始量.
(1)随着时间的增加,臭氧的含量是增加还是减少?
(2)多少年以后将会有一半的臭氧消失?(提示:
,
)



(1)随着时间的增加,臭氧的含量是增加还是减少?
(2)多少年以后将会有一半的臭氧消失?(提示:


某学校2016年投入130万元用于改造教学硬件设施,为进一步改善教学设施,该校决定每年投入的资金比上一年增长
,则该校某年投入的资金开始超过300万的年份是(参考数据:
,
,
)( )




A.2022 | B.2023 | C.2024 | D.2025 |
某商厦欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量
万件与促销费用
万元满足
,已知
万件该商品的进价成本
为万元,商品的销售价格为
元/件.
(1)将该商品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?






(1)将该商品的利润


(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?