已知函数,则(    )
A.-3B.-1C.3D.4
当前题号:1 | 题型:单选题 | 难度:0.99
某地农业检测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:
月份
1月份
2月份
3月份
4月份
收购价格(元/斤)
6
7
6
5
养殖成本(元/斤)
3
4
4.6
5
现打算从以下两个函数模型:①,();②中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数模型解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在接下来的月份里有没有可能亏损?
当前题号:2 | 题型:解答题 | 难度:0.99
为保护生态环境,我市某山区自2005年起开始实行退耕还林.已知2004年底该山区森林覆盖面积为a亩.
(1)设退耕还林后,森林覆盖面积的年自然增长率为2%,写出该山区的森林覆盖面积y(亩)与退耕还林年数x(年)之间的函数关系式,并求出2009年底时该山区的森林覆盖面积.
(2)如果要求到2014年底,该山区的森林覆盖面积至少是2004年底的2倍,就必须还要实行人工绿化工程.请问2014年底要达到要求,该山区森林覆盖面积的年平均增长率不能低于多少?
(参考数据:1.024=1.082,1.025=1.104,1.026=1.126,lg2=0.301,lg1.072=0.0301)
当前题号:3 | 题型:解答题 | 难度:0.99
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.
(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?
当前题号:4 | 题型:解答题 | 难度:0.99
由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)判断函数的单调性(不必证明);
(2)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(3)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.
当前题号:5 | 题型:解答题 | 难度:0.99
已知某种商品每日的销售量y(单位:吨)与销售价格x(单位:万元/吨,1<x≤5)满足:当1<x≤3时,y=a(x﹣4)2+(a为常数);当3<x≤5时,y=kx+7(k<0),已知当销售价格为3万元/吨时,每日可售出该商品4吨,且销售价格x∈(3,5]变化时,销售量最低为2吨.
(1)求a,k的值,并确定y关于x的函数解析式;
(2)若该商品的销售成本为1万元/吨,试确定销售价格x的值,使得每日销售该商品所获利润最大.
当前题号:6 | 题型:解答题 | 难度:0.99
某工厂从1970年的年产值200万元增加到40年后2010年的1000万元,假设每年产值增长率相同,则每年年产值增长率是(为很小的正数时,
A.3%B.4%C.5%D.6%
当前题号:7 | 题型:单选题 | 难度:0.99
大气能见度和雾霾、降雨等天气情况密切相关,而大气能见度直接影响车辆的行车速度V(千米/小时)和道路的车流密度M(辆/千米),经有关部门长时间对某道路研究得出,大气能见度不足100米时,为保证安全,道路应采取封闭措施,能见度达到100米后,车辆的行车速度V和大气能见度x(米)近似满足函数V(x),已知道路的车流密度M(辆/千米)是大气能见度x(米)的一次函数,能见度为100时,车流密度为160;当能见度为500时,车流密度为为80.
(1)当x≥100时,求道路车流密度M与大气能见度x的函数解析式;
(2)当车流量F(x)的解析式(车流量=行车速度×车流密度);
(3)当大气能见度为多少时,车流密度会达到最大值,并求出最大值.
当前题号:8 | 题型:解答题 | 难度:0.99
某商场销售一种商品,已知该商品每件成本为元,若每件售价为,则年销售量(万件)与每件售价(元)之间满足关系式:,且当每件售价为元时,年销售量为万件.
(Ⅰ)试确定的值,并求该商场的年利润关于售价的函数关系式;
(Ⅱ)试确定售价的值,使年利润最大,并求出最大年利润.
当前题号:9 | 题型:解答题 | 难度:0.99
双流中学食堂旁边有一块矩形空地,学校想要在这块空地上修建一个内接四边形花坛(如下图所示),该花坛的四个顶点分别落在矩形的四条边上,已知,且,设,花坛的面积记为

(1)求的解析式,并指出这个函数的定义域;
(2)当为何值时,花坛面积最大?并求出最大面积.
当前题号:10 | 题型:解答题 | 难度:0.99