- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
自2017年,大连“蜗享出行”正式引领共享汽车,改变人们传统的出行理念,给市民出行带来了诸多便利
该公司购买了一批汽车投放到市场给市民使用
据市场分析,每辆汽车的营运累计收入
单位:元
与营运天数
满足
.
要使营运累计收入高于1400元求营运天数的取值范围;
每辆汽车营运多少天时,才能使每天的平均营运收入最大?








某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*)
(1)设完成A 型零件加工所需时间为
小时,写出
的解析式;
(2)为了在最短时间内完成全部生产任务,x应取何值?
(1)设完成A 型零件加工所需时间为


(2)为了在最短时间内完成全部生产任务,x应取何值?
某食品的保鲜时间
(单位:小时)与储存温度
(单位:
)满足函数关系
(
为自然对数的底数,
为常数)若该食品在
的保鲜时间是384小时,在
的保鲜时间是24小时,则该食品在
的保险时间是( )小时









A.6 | B.12 | C.18 | D.24 |
根据表格中的数据,可以判定方程
的一个根所在的区间为( )

![]() | -1 | 0 | 1 | 2 | 3 |
![]() | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
![]() | 1 | 2 | 3 | 4 | 5 |
A.![]() | B.![]() | C.![]() | D.![]() |
已知光通过一块某种玻璃,强度要损失10%.那么要使光的强度减弱到原来的
以下,则至少需要通过这样的玻璃(参考数据:
)( )


A.6块 | B.7块 | C.8块 | D.9块 |
美国一贯推行强权政治,2018年3月22日,美国总统特朗普在白宫签署了对中国输美产品征收关税的总统备忘录,限制中国商品进入美国市场。中国某企业计划打入美国市场,决定从A、B两种产品中只选一种进行投资生产,已知投入生产这两种产品的有关数据如下表:(单位:万元)
其中固定成本与年生产的件数无关,m是待定的常数,其值由生产A产品的原材料决定,预计
,另外,年销售
件B产品时需交0.05
万元的附件关税,假设生产出来的产品都能在当年销售出去.
(1)求该厂分别投资生产A、B两种产品的年利润
与生产相应产品的件数
之间的函数关系,并求出其定义域;
(2)如何投资才可获得最大年利润?请设计出投资方案.
| 年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产件数 |
A产品 | 40 | m | 15 | 200 |
B产品 | 60 | 10 | 22 | 150 |
其中固定成本与年生产的件数无关,m是待定的常数,其值由生产A产品的原材料决定,预计



(1)求该厂分别投资生产A、B两种产品的年利润


(2)如何投资才可获得最大年利润?请设计出投资方案.
根据表格中的数据,可以断定函数
的零点所在的区间是 ( )

![]() | 1 | 2 | ![]() | 3 | 5 |
![]() | 0 | 0.69 | 1 | 1.10 | 1.61 |
![]() | 3 | 1.5 | 1.10 | 1 | 0.6 |
A.![]() | B.![]() | C.![]() | D.![]() |
甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求
),每小时可获得利润是
元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.


(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.