- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某城市小区有一个矩形休闲广场,
米,广场的一角是半径为
米的扇形
绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅
(宽度不计),点
在线段
上,并且与曲线
相切;另一排为单人弧形椅沿曲线
(宽度不计)摆放.已知双人靠背直排椅的造价每米为
元,单人弧形椅的造价每米为
元,记锐角
,总造价为
元.

(1)试将
表示为
的函数
,并写出
的取值范围;
(2)如何选取点
的位置,能使总造价
最小.













(1)试将




(2)如何选取点


已知函数f(x)=x2+bx+c有两个零点0和﹣2,且g(x)和f(x)的图象关于原点对称.
(1)求函数f(x)和g(x)的解析式;
(2)解不等式f(x)≥g(x)+6x﹣4;
(3)如果f(x)定义在[m,m+1],f(x)的最大值为g(m),求g(m)的解析式.
(1)求函数f(x)和g(x)的解析式;
(2)解不等式f(x)≥g(x)+6x﹣4;
(3)如果f(x)定义在[m,m+1],f(x)的最大值为g(m),求g(m)的解析式.