- 集合与常用逻辑用语
- 函数与导数
- 求对数函数的最值
- 根据对数函数的最值求参数或范围
- + 对数函数最值与不等式的综合问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=log
(x2-2ax+3).
(1)若f(-1)=-3,求f(x)的单调区间;
(2)是否存在实数a,使f(x)在(-∞,2)上为增函数?若存在,求出a的范围;若不存在,说明理由.

(1)若f(-1)=-3,求f(x)的单调区间;
(2)是否存在实数a,使f(x)在(-∞,2)上为增函数?若存在,求出a的范围;若不存在,说明理由.
已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围;
(3)当t∈[26,56]时,函数F(x)=2g(x)﹣f(x)的最小值为h(t),求h(t)的解析式.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围;
(3)当t∈[26,56]时,函数F(x)=2g(x)﹣f(x)的最小值为h(t),求h(t)的解析式.
在对数函数
的图象上有三个点A,B,C,它们的横坐标依次为a,a+1,a+2,其中a≥1.设△ABC的面积为S.
(1)求
;
(2)求
的最大值.

(1)求

(2)求

已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围.