- 集合与常用逻辑用语
- 函数与导数
- 二次函数的定义域
- + 求二次函数的值域
- 求二次函数的解析式
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某机械制造厂生产一种新型产品,生产的固定成本为20000元,每生产一件产品需增加投入成本100元.根据初步测算,当月产量是x件时,总收益(单位:元)为
,利润=总收益-总成本.
(1)试求利润y(单位:元)与x(单位:件)的函数关系式;
(2)当月产量为多少件时利润最大?最大利润是多少?

(1)试求利润y(单位:元)与x(单位:件)的函数关系式;
(2)当月产量为多少件时利润最大?最大利润是多少?
已知二次函数y=f(x)满足f(-2)=f(4)=-16,且f(x)最大值为2.
(1)求函数y=f(x)的解析式.
(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.
(1)求函数y=f(x)的解析式.
(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.
奇函数f(x)在
上的解析式是f(x)=x(1+x),则f(x)在
上有( )


A.最大值-1/4 | B.最大值1/4 | C.最小值-1/4 | D.最小值1/4 |
经市场调查,某门市部的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间
(天)的函数,且日销售量近似满足函数
(件),而且销售价格近似满足于
(元).
(1)试写出该种商品的日销售额
与时间
的函数表达式;
(2)求该种商品的日销售额
的最大值与最小值.



(1)试写出该种商品的日销售额


(2)求该种商品的日销售额

已知二次函数f(x)=ax2+bx+c,满足条件f(0)=0和f(x+2)-f(x)=4x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数g(x)=f(x)-2tx+2,当x∈[1,+∞)时,求函数g(x)的最小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数g(x)=f(x)-2tx+2,当x∈[1,+∞)时,求函数g(x)的最小值.
已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.