- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- + 一次函数与二次函数
- 二次函数的概念
- 二次函数的性质与图象
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f (x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在
上单调递增,求实数m的取值范围.
(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在

已知f(x)是二次函数,f(0)=f(5)=0,且f(﹣1)=12
(1)求f(x)的解析式;
(2)求f(x)在[0,m]的最小值g(m).
(1)求f(x)的解析式;
(2)求f(x)在[0,m]的最小值g(m).
若函数f(x)=x2﹣2kx﹣7在[1,5]上为单调递增函数,则实数k的取值范围是( )
A.(﹣∞,1] | B.[5,+∞) |
C.(﹣∞,1]∪[5,+∞) | D.[1,5] |
二次函数f(x)满足f(x+2)=f(-x+2),且f(0)=3,f(2)=1,若在[0,m]上f(x)的最大值为3,最小值为1,则m的取值范围是( )
A.(0,+∞) | B.[2,+∞) | C.(0,2] | D.[2,4] |