- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- + 一次函数与二次函数
- 二次函数的概念
- 二次函数的性质与图象
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数
.
(Ⅰ)若方程
有两个实数根
,且方程
有两个相等的根,求
的解析式:
(Ⅱ)若
的图像与
轴交于
两点,且当
时,
恒成立,求实数
的取值范围.

(Ⅰ)若方程




(Ⅱ)若






已知抛物线
(
),其准线方程为
,直线
过点
(
)且与抛物线交于
两点,
为坐标原点.
(1)求抛物线方程,并证明:
的值与直线
倾斜角的大小无关;
(2)若
为抛物线上的动点,记
的最小值为函数
,求
的解析式.








(1)求抛物线方程,并证明:


(2)若




对于定义域为
的函数
,如果存在区间
(
),同时满足:
①
在
内是单调函数;②当定义域是
时,
的值域也是
.
则称函数
是区间
上的“保值函数”.
(1)求证:函数
不是定义域
上的“保值函数”;
(2)已知
(
)是区间
上的“保值函数”,求
的取值范围.




①





则称函数


(1)求证:函数


(2)已知




甲、乙两辆公共汽车分别自
两地同时出发,相向而行,甲车行驶85千米后与乙车相遇,然后继续前进,两车到达对方的出发点等侯30分钟立即依原路返回,当甲车行驶65千米后又与乙车相遇,求
两地的距离.

