- 集合与常用逻辑用语
- 函数与导数
- 函数的周期性的定义与求解
- 由周期性求函数的解析式
- + 函数周期性的应用
- 判断抽象函数的周期性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义在
上的奇函数
满足
,且
时
,甲,乙,丙,丁四位同学有下列结论:
甲:
;
乙:函数
在
上是增函数;
丙:函数
关于直线
对称;
丁:若
,则关于
的方程
在
上所有根之和为
其中正确的是( ).





甲:

乙:函数


丙:函数


丁:若





A.甲,乙,丁 | B.乙,丙 | C.甲,乙,丙 | D.甲,丁 |
设
是定义在R上周期为2的函数,且对任意的实数
,恒有
,当
时,
,则函数
在区间
上零点的个数为 ( )







A.2017 | B.2018 | C.4034 | D.4036 |