- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数f(x),g(x)都是定义域为R的奇函数,若f(-1)+g(-2)=-3,f(-1)-g(-2)=1,则( )
A.f(1)=1,g(2)=-2 | B.f(1)=-2,g(2)=1 |
C.f(1)=1,g(2)=2 | D.f(1)=2,g(2)=1 |
已知y=f(x)是定义在R上周期为4的奇函数,且当0≤x≤2时,f(x)=x2-2x,则当10≤x≤12时,f(x)=________________.
若存在不为零的常数
,使得函数
对定义域内的任一
均有
,则称函数
为周期函数,其中常数
就是函数的一个周期.
(1)证明:若存在不为零的常数
使得函数
对定义域内的任一
均有
,则此函数是周期函数.
(2)若定义在
上的奇函数
满足
,试探究此函数在区间
内零点的最少个数.






(1)证明:若存在不为零的常数




(2)若定义在




内零点的最少个数.
已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=( )
A.-2 | B.![]() | C.2 | D.5 |