- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知一次函数f(x)为增函数,且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)当x∈[-1,2]时,若不等式g(x)>0恒成立,求m的取值范围;
(2)如果函数F(x)=f(x)g(x)为偶函数,求m的值;
(3)当函数f(x)和g(x)满足f(g(x))=g(f(x))时,求函数的值域.
若f(x)为R上的奇函数,给出下列四个说法:
①f(x)+f(-x)=0 ; ②f(x)-f(-x)=2f(x);
③f(x)·f(-x)<0; ④
.其中一定正确的有()
①f(x)+f(-x)=0 ; ②f(x)-f(-x)=2f(x);
③f(x)·f(-x)<0; ④

A.0个 | B.1个 | C.2个 | D.3个 |
对于定义域为R的任意奇函数f(x)都恒成立的是( )
A.f(x)-f(-x)≥0 | B.f(x)-f(-x)≤0 |
C.f(x)·f(-x)≤0 | D.f(x)·f(-x)>0 |