- 集合与常用逻辑用语
- 函数与导数
- + 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
都是定义域为
的连续函数.若:
满足:①当
时,
恒成立;②
都有
.
满足:①
都有
;②当
时,
.若关于
的不等式
对
恒成立,则
的取值范围是( )



















A.![]() | B.![]() | C.![]() | D.![]() |
已知函数f(x)=2sin(ωx),其中常数ω>0
(1)令ω=1,判断函数
的奇偶性,并说明理由;
(2)令ω=2,将函数y=f(x)的图象向左平移个
单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.
(1)令ω=1,判断函数

(2)令ω=2,将函数y=f(x)的图象向左平移个
