- 集合与常用逻辑用语
- 函数与导数
- + 函数及其性质
- 函数及其表示
- 函数的基本性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果函数
的定义域为
,对于定义域内的任意
存在实数
使得
成立,则称此函数具有“
性质”.
(1)判断函数
是否具有“
性质”,若具有“
性质”,写出所有
的值;若不具有“
性质”,请说明理由.
(2)设函数
具有“
性质”,且当
时,
,求当
时函数
的解析式;若
与
交点个数为1001个,求
的值.






(1)判断函数





(2)设函数










已知定义域为R的函数f(x)满足f(﹣x﹣1)=f(x﹣1),且f(x﹣1)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=x3,记函数g(x)=f(x)+f(x﹣1)﹣3x(5≤x≤6),则函数g(x)的最小值为_____.
已知定义在
上的奇函数
满足
,且
时有
,甲、乙、丙、丁四位同学有下列结论:
甲:
;
乙:函数
在
上是增函数;
丙:函数
关于直线
对称;
丁:若
,则关于
的方程
在
上所有根之和为
.
其中正确的是( )





甲:

乙:函数


丙:函数


丁:若





其中正确的是( )
A.乙、丁 | B.乙、丙 | C.甲、乙、丙 | D.乙、丙、丁 |
已知函数
,给出下列关于
的性质:
①
是周期函数,3是它的一个周期;
②
是偶函数;
③方程
有有理根;
④方程
与方程
的解集相同;
⑤
是周期函数,
是它的一个周期.
其中正确的个数为( )


①

②

③方程

④方程


⑤


其中正确的个数为( )
A.4个 | B.3个 | C.2个 | D.1个 |