- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对任意实数
,定义函数
,已知函数
,
,记
.
(1)若对于任意实数
,不等式
恒成立,求实数
的取值范围;
(2)若
,且
,求使得等式
成立的
的取值范围;
(3)在(2)的条件下,求
在区间
上的最小值.





(1)若对于任意实数



(2)若




(3)在(2)的条件下,求


对于函数y=H(x),若在其定义域内存在x0,使得x0·H(x0)=1成立,则称x0为函数H(x)的“倒数点”.已知函数f(x)=ln x,g(x)=
(x+1)2-1.
(1)求证:函数f(x)有“倒数点”,并讨论函数f(x)的“倒数点”的个数;
(2)若当x≥1时,不等式xf(x)≤m[g(x)-x]恒成立,试求实数m的取值范围.

(1)求证:函数f(x)有“倒数点”,并讨论函数f(x)的“倒数点”的个数;
(2)若当x≥1时,不等式xf(x)≤m[g(x)-x]恒成立,试求实数m的取值范围.
对于三次函数
,给出定义:设
是
的导数,
是
的导数,若方程
有实数解
,则称点
为函数
的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数
,则
( )











A.2017 | B.2018 | C.2019 | D.2020 |