- 集合与常用逻辑用语
- + 充要条件的证明
- 探求命题为真的充要条件
- 根据充要条件求参数
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若
满足
为
上奇函数且
为
上偶函数,求
的值;
(2)若函数
满足
对
恒成立,函数
,求证:函数
是周期函数,并写出
的一个正周期;
(3)对于函数
,
,若
对
恒成立,则称函数
是“广义周期函数”,
是其一个广义周期,若二次函数
的广义周期为
(
不恒成立),试利用广义周期函数定义证明:对任意的
,
,
成立的充要条件是
.


(1)若






(2)若函数







(3)对于函数














已知
,
为两非零有理数列(即对任意的
,
均为有理数),
为一无理数列(即对任意的
,
为无理数).
(1)已知
,并且
对任意的
恒成立,试求
的通项公式.
(2)若
为有理数列,试证明:对任意的
,
恒成立的充要条件为
.
(3)已知
,
,对任意的
,
恒成立,试计算
.







(1)已知




(2)若




(3)已知





设集合
,其中
.
(1)写出集合
中的所有元素;
(2)设
,证明“
”的充要条件是“
”
(3)设集合
,设
,使得
,且
,试判断“
”是“
”的什么条件并说明理由.


(1)写出集合

(2)设



(3)设集合





