- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- + (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=A
A.![]() (1)求点A和点B的坐标; (2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式. |
如图长方形ABCD中,AD=3cm,CD=2cm,Q,P两点分别同时从点A和CD中点以相同的速度1cm/s运动,Q从A-B-C运动到C停止运动,P从CD中点开始向C运动到达C后返回向D运动,在CD间来回运动Q停止时P也同时停止,运动的时间为t,(1)t=2时,三角形DPQ的面积为_____ ;(2)在运动过程中用t的代数式表示三角形DPQ的面积____ .

如图,正方形ABCD的边长AB是方程
的一个根,动点P从A至B以3cm/s的速度移动,动直线EF从与AB重合的位置开始向上以1cm/s速度移动(EF∥AB),EF交AD、AC、BC于E、M、F。设运动时间为t秒.
(1)当t=1时,四边形MFBP的面积为 .用t表示△APM的面积为 .
(2)在某一时刻t,使△APM与四边形MFBP的面积相等,求t的值.

(1)当t=1时,四边形MFBP的面积为 .用t表示△APM的面积为 .
(2)在某一时刻t,使△APM与四边形MFBP的面积相等,求t的值.

在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接E
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,
的大小是否发生变化?如果变化,请说明理由;如果不变,请求出
的值.
(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
A.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒. |
(2)如图2,当点E在线段AB上移动的过程中,


(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.

如图1,在矩形
中,对角线
与
相交于点
,动点
从点
出发,在线段
上匀速运动,到达点
时停止.设点
运动的路程为
,线段
的长为
,如果
与
的函数图象如图2所示,则矩形
的面积是( )

















A.20 | B.24 | C.48 | D.60 |
如图,在矩形ABCD中,AB=3,BC=4.点P从点A出发,沿A﹣B﹣C运动,速度为每秒1个单位长度.点Q从点C出发,沿C﹣A﹣D运动,沿C﹣A运动时的速度为每秒1个单位长度,沿A﹣D运动时的速度为每秒3个单位长度.P、Q两点同时出发,当点Q到达点D时,P、Q两点同时停止运动.连结PQ、CP.设△APQ的面积为S,点P的运动时间为t(秒).
(1)当t=6时,求AQ的长.
(2)当点Q沿C﹣A运动时,用含t的代数式表示点Q到AB、BC的距离.
(3)求S与t的函数关系式.
(4)在点P运动的过程中,直接写出△APQ与△CPQ同时为钝角三角形时t的取值范围.
(1)当t=6时,求AQ的长.
(2)当点Q沿C﹣A运动时,用含t的代数式表示点Q到AB、BC的距离.
(3)求S与t的函数关系式.
(4)在点P运动的过程中,直接写出△APQ与△CPQ同时为钝角三角形时t的取值范围.

如图,在矩形
中,
,
,点
从点
出发沿
以2
的速度向点终点
运动,同时点
从点
出发沿
以1
的速度向点终点
运动,它们到达终点后停止运动.

(1)几秒后,点
、
的距离是点
、
的距离的2倍;
(2)几秒后,
的面积是24
.














(1)几秒后,点




(2)几秒后,


如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.

(1)当t为何值时,CP把△ABC的周长分成相等的两部分;
(2)当t为何值时,CP把△ABC的面积分成相等的两部分;
(3)在(2)的情况下,若过点P作PE//BC,且在BC上有一点F,PE=CF,连结PF,
BE,试探索PF与BE的数量关系.

(1)当t为何值时,CP把△ABC的周长分成相等的两部分;
(2)当t为何值时,CP把△ABC的面积分成相等的两部分;
(3)在(2)的情况下,若过点P作PE//BC,且在BC上有一点F,PE=CF,连结PF,
BE,试探索PF与BE的数量关系.
如图1,已知平行四边形ABCD,AB∥x轴AB=12,点A的坐标为(2,-8),点D的坐标为(-6,8),点B在第四象限,点P是平行四边形ABCD边上的一个动点,若点P在边AB、AD,CD上,点G是AD与y轴的交点.

(1)若点P在边BC上,PD=CD,则点P的坐标为____.
(2)如图2过点P作y轴的平行线PM过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,则点P的坐标为____.

(1)若点P在边BC上,PD=CD,则点P的坐标为____.
(2)如图2过点P作y轴的平行线PM过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,则点P的坐标为____.