- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- + (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在
中,
,
,
,点
是线段
上任意一点,过点
作
交
于点
,过点
作
交
于点
,过点
作
交
于点
.设线段
的长为
.

(1)用含
的代数式表示线段
的长.
(2)当四边形
为菱形时,求
的值.
(3)设
与矩形
重叠部分图形的面积为
,求
与
之间的函数关系式.
(4)连结
、
,当
与
垂直或平行时,直接写出
的值.





















(1)用含


(2)当四边形


(3)设





(4)连结





已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P的运动时间为t秒.
(1)当t=5时, OP长为____________;
(2)当点P在BC边上时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;
(1)当t=5时, OP长为____________;
(2)当点P在BC边上时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;

如图所示,长方形ABCD中,AB=4,BC=
,点E是折线ADC上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有( )



A.4个 | B.5个 | C.6个 | D.不能确定 |
如图,正方形ABCD的边长为5,E是AD边上一点,AE=3,动点P由点D向点C运动,速度为每秒2个单位长度,EP的垂直平分线交AB于M,交CD于N,设运动时间为t秒,当PM∥BC时,t的值为_____.

如图①,点
从菱形
的顶点
出发,沿
以
的速度匀速运动到点
.图②是点
运动时,
的面积
(
)随着时间
(
)变化的关系图象,则菱形的边长为( )













A.![]() | B.![]() | C.![]() | D.![]() |
如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和PBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为( )


A.![]() | B.![]() | C.4 | D.3 |
如图所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是ts(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF,若四边形AEFD为菱形,则t的值为( )


A.20 | B.15 | C.10 | D.5 |
如图,△ABC中,BA=BC,CO⊥AB于点O,AO=4,BO=6.

(1)求BC,AC的长;
(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.
①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.
②设DE交直线BC于点F,连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为 (直接写出结果).

(1)求BC,AC的长;
(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.
①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.
②设DE交直线BC于点F,连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为 (直接写出结果).
如图,长方形ABCD在直角坐标系中,边BC在x轴上,B点坐标为(m,0)且m>0.AB=a,BC=b,且满足b=
.
(1)求a,b的值及用m表示出点D的坐标;
(2)连接OA,AC,若△OAC为等腰三角形,求m的值;
(3)△OAC能为直角三角形吗?若能,求出m的值;若不能,说明理由.

(1)求a,b的值及用m表示出点D的坐标;
(2)连接OA,AC,若△OAC为等腰三角形,求m的值;
(3)△OAC能为直角三角形吗?若能,求出m的值;若不能,说明理由.

如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.
(1)数轴上点A表示的数为 .
(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O´A´B´C´,移动后的长方形O´A´B´C´与原长方形OABC重叠部分(如图8中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A´表示的数是 .
②设点A的移动距离AA'=x
(ⅰ)当S=4时,求x的值;
(ⅱ)D为线段AA´的中点,点E在找段OO'上,且OO'=3OE,当点D,E所表示的数互为相反数时,求x的值.
(1)数轴上点A表示的数为 .
(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O´A´B´C´,移动后的长方形O´A´B´C´与原长方形OABC重叠部分(如图8中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A´表示的数是 .
②设点A的移动距离AA'=x
(ⅰ)当S=4时,求x的值;
(ⅱ)D为线段AA´的中点,点E在找段OO'上,且OO'=3OE,当点D,E所表示的数互为相反数时,求x的值.
