刷题首页
题库
初中数学
题干
如图,正方形ABCD的边长AB是方程
的一个根,动点P从A至B以3cm/s的速度移动,动直线EF从与AB重合的位置开始向上以1cm/s速度移动(EF∥AB),EF交AD、AC、BC于E、M、F。设运动时间为t秒.
(1)当t=1时,四边形MFBP的面积为
.用t表示△APM的面积为
.
(2)在某一时刻t,使△APM与四边形MFBP的面积相等,求t的值.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-17 09:39:13
答案(点此获取答案解析)
同类题1
如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由.
同类题2
如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为( )
A.4s
B.3s
C.2s
D.1s
同类题3
如图1,在等腰梯形
ABCO
中,
AB
∥
CO
,
E
是
AO
的中点,过点
E
作
EF
∥
OC
交
BC
于
F
,
AO
=4,
OC
=6,∠
AOC
=60°.现把梯形
ABCO
放置在平面直角坐标系中,使点
O
与原点重合,
OC
在
x
轴正半轴上,点
A
,
B
在第一象限内.
(1)求点
E
的坐标及线段
AB
的长;
(2)点
P
为线段
EF
上的一个动点,过点
P
作
PM
⊥
EF
交
OC
于点
M
,过
M
作
MN
∥
AO
交折线
ABC
于点
N
,连结
PN
,设
PE
=
x
.△
PMN
的面积为
S
.
①求
S
关于
x
的函数关系式;
②△
PMN
的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形
EDGH
(
H
在
EF
上,
DG
落在
OC
上,∠
EDG
=90°,且
DG
=3,
HG
∥
BC
.现在开始操作:固定等腰梯形
ABCO
,将直角梯形
EDGH
以每秒1个单位的速度沿
OC
方向向右移动,直到点
D
与点
C
重合时停止(如图2).设运动时间为
t
秒,运动后的直角梯形为
E
′
D
′
G
′
H
′(如图3);试探究:在运动过程中,等腰梯
ABCO
与直角梯形
E
′
D
′
G
′
H
′重合部分的面积
y
与时间
t
的函数关系式.
同类题4
如图,矩形
ABCD
中,
AB
=5
cm
,
BC
=10
cm
,动点
M
从点
D
出发,按折线
DCBAD
方向以3
cm
/
s
的速度运动,动点
N
从点
D
出发,按折线
DABCD
方向以2
cm
/
s
的速度运动.点
E
在线段
BC
上,且
BE
=1
cm
,若
M
、
N
两点同时从点
D
出发,到第一次相遇时停止运动.
(1)求经过几秒钟
M
、
N
两点停止运动?
(2)求点
A
、
E
、
M
、
N
构成平行四边形时,
M
、
N
两点运动的时间;
(3)设运动时间为t(s),用含字母t的代数式表示△
EMN
的面积S(cm
2
).
同类题5
如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=A
A.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.
相关知识点
图形的性质
四边形
特殊的平行四边形
四边形综合
(特殊)平行四边形的动点问题