- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- + 根据正方形的性质与判定证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
点P是正方形ABCD边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得到线段PE,连接BE,则∠CBE等于 .

如图,正方形ABCD中,E是BD上一点,AE的延长线交CD于F,交BC的延长线于G,M是FG的中点,连接EC.

(1)求证:∠1=∠2;
(2)求证:
.

(1)求证:∠1=∠2;
(2)求证:

如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.

(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.

(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
如图,∠MON=90°,点A、B分别在边ON和OM上(∠OAB≠45°).

(1)根据要求,利用尺规作图,补全图形:
第①步:作∠MON的平分线OC,作线段AB的垂直平分线l,OC和l交于点P,第②步:连接PA、PB;
(2)结合补完整的图形,判断PA和PB有什么数量关系和位置关系?并说明理由.

(1)根据要求,利用尺规作图,补全图形:
第①步:作∠MON的平分线OC,作线段AB的垂直平分线l,OC和l交于点P,第②步:连接PA、PB;
(2)结合补完整的图形,判断PA和PB有什么数量关系和位置关系?并说明理由.
综合与实践
问题情境
在综合与实践课上,老师让同学们以“大小不等的两个正方形”为主题开展数学活动,如图1,现有一个边长为
的正方形
,点
从对角线
的点
出发向点
运动,连接
并延长至点
,使
,以
为边在
右侧作正方形
,边
与射线
交于点
.

操作发现
(1)点
在运动过程中,判断线段
与线段
之间的数量关系,并说明理由;
实践探究
(2)在点
的运动过程中,某时刻正方形
与正方形
重叠的四边形
的面积是
,求此时
的长;
探究拓广
(3)请借助备用图2,探究当点
不与点
,
重合时,线段
,
与
之间存在的数量关系,请直接写出.
问题情境
在综合与实践课上,老师让同学们以“大小不等的两个正方形”为主题开展数学活动,如图1,现有一个边长为
















操作发现
(1)点



实践探究
(2)在点






探究拓广
(3)请借助备用图2,探究当点







如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是( )


A.22.5° | B.30° | C.45° | D.67.5° |
如图,在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①
;②AG=
GC;③BE+DF=EF;④
.其中正确的是( )





A.①②③ | B.①③④ | C.①②④ | D.①②③④ |
已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.
(1)如图1,求证:AE=EF;
(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.
(1)如图1,求证:AE=EF;
(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.

如图,点E是正方形ABCD的边BC上一点,连接AE,将线段AE绕点E顺时针旋转一定的角度得到EF,点C在EF上,连接AF交边CD于点G.
(1)若AB=4,BF=8,求CE的长;
(2)求证:AE=BE+DG.
(1)若AB=4,BF=8,求CE的长;
(2)求证:AE=BE+DG.
