- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据正方形的性质与判定求角度
- + 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).

(1)∠PBD的度数为 ,点D的坐标为 (用t表示);
(2)当t为何值时,△PBE为等腰三角形?

(1)∠PBD的度数为 ,点D的坐标为 (用t表示);
(2)当t为何值时,△PBE为等腰三角形?
如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.

(1)、求证:△ABE≌△ADF;
(2)、若等边△AEF的周长为6,求正方形ABCD的边长.

(1)、求证:△ABE≌△ADF;
(2)、若等边△AEF的周长为6,求正方形ABCD的边长.
如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长度为_______
.
.

在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c满足
.DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点

A.![]() ![]() (1)求点A、B、D的坐标; (2)求点C、E、F的坐标; (3)如图,过P(0,-1)作x轴的平行线,在该平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求 ![]() |
C将一张边长为2的正方形纸片
对折,设折痕为
(如图①);再沿过点
的折痕将∠
反折,使得点
落在
上的点
处(如图②),折痕交
于点
,则
的长度是( )












A.![]() | B.![]() | C.![]() | D.![]() |
如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.

(1)求证:∠APB=∠BPH.
(2)求证:AP+HC=PH.
(3)当AP=1时,求PH的长.

(1)求证:∠APB=∠BPH.
(2)求证:AP+HC=PH.
(3)当AP=1时,求PH的长.