- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据正方形的性质与判定求角度
- + 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.

(方程思想)如图,在铁路CD同侧有两个村庄A,B,它们到铁路的距离分别是15 km和10 km,作AC⊥CD,BD⊥CD,垂足分别为C,D,且CD=25 km.已知铁路旁有一个农副产品收购站E,且AE=BE,求CE的长.

如图所示,数轴上表示1和3 对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.
(1)请你写出数x的值;
(2)求(x﹣3 )2的立方根.

如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F是CD上的一点.
(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;
(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.
(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;
(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.
