- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据正方形的性质与判定求角度
- + 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知正方形ABCD中,点E在DC边上,DE=4,EC=2,如图,把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点间的距离为_____.

阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为x=a的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,需要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为两个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解,各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想﹣转化,即把未知转化为已知来求解.
用“转化“的数学思想,我们还可以解一些新的方程.
例如,解一元三次方程x3+x2﹣2x=0,通过因式分解把它转化为x(x2+x﹣2)=0,通过解方程x=0和x2+x﹣2=0,可得原方程x3+x2﹣2x=0的解.
再例如,解根号下含有来知数的方程:
=x,通过两边同时平方把它转化为2x+3=x2,解得:x1=3,x2=﹣1.因为2x+3≥0,且x≥0,所以x=﹣1不是原方程的根,x=3是原方程的解.
(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)拓展:求方程
=x﹣1的解;
(3)应用:在一个边长为1的正方形中构造一个如图所示的正方形;在正方形ABCD边上依次截取AE=BF=CG=DH=
,连接AG,BH,CE,DF,得到正方形MNPQ,若小正方形MNPQ(图中阴影部分)的边长为
,求n的值.
用“转化“的数学思想,我们还可以解一些新的方程.
例如,解一元三次方程x3+x2﹣2x=0,通过因式分解把它转化为x(x2+x﹣2)=0,通过解方程x=0和x2+x﹣2=0,可得原方程x3+x2﹣2x=0的解.
再例如,解根号下含有来知数的方程:

(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)拓展:求方程

(3)应用:在一个边长为1的正方形中构造一个如图所示的正方形;在正方形ABCD边上依次截取AE=BF=CG=DH=



如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE'F'G',此时点G'在AC上,连接CE',则CE'+CG'=_____ .

如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,4),B点在x轴上,对角线AC,BD交于点M,OM=6
,则点C的坐标为_____ .


如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值( )


A.2 |
B.4 |
C.![]() |
D.![]() |
如图,在△ABC中,∠ACB=90°,∠ACB与∠CAB的平分线交于点P,PD⊥AB于点D,若△APC与△APD的周长差为
,四边形BCPD的周长为12+
,则BC等于______ .



如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B、C、G在同一直线上,M是线段AE的中点,连结MF,则MF的长为_____.

如图,已知点G在正方形ABCD的对角线AC上,GE⊥BC,GF⊥CD,垂足分别为点E,

A. (1)求证:四边形CEGF是正方形; (2)将正方形CEGF绕点C顺时针旋转 ![]() |

在平面直角坐标系中,O为原点,点A(﹣6,0)、点C(0,6),若正方形OABC绕点O顺时针旋转,得正方形OA′B′C′,记旋转角为α:
(1)如图①,当α=45°时,求BC与A′B′的交点D的坐标;
(2)如图②,当α=60°时,求点B′的坐标;
(3)若P为线段BC′的中点,求AP长的取值范围(直接写出结果即可).
(1)如图①,当α=45°时,求BC与A′B′的交点D的坐标;
(2)如图②,当α=60°时,求点B′的坐标;
(3)若P为线段BC′的中点,求AP长的取值范围(直接写出结果即可).
