- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- + 菱形的性质
- 利用菱形的性质求角度
- 利用菱形的性质求线段长
- 利用菱形的性质求面积
- 利用菱形的性质证明
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是( )


A.CP平分∠ACB | B.CP⊥AB |
C.CP是AB边上的中线 | D.CP=AP |
如图,将边长为
的菱形ABCD纸片放置在平面直角坐标系中.已知∠ABO=45°.
(1)求出点B、C的坐标;
(2)设边AB沿y轴对折后的对应线段为AB′,求出点B′的坐标及线段CB′的长.

(1)求出点B、C的坐标;
(2)设边AB沿y轴对折后的对应线段为AB′,求出点B′的坐标及线段CB′的长.

如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于
长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接E

A.![]() (1)四边形ABEF是_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果) (2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________°.(直接填写结果) |
如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为________.


已知:如图,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得到△GFC.
(1)求证:BE=D
(2)若四边形ABFG是菱形,且∠B=60°,则AB: BC= .
(1)求证:BE=D
A. |
