- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行四边形的性质
- 平行四边形的判定
- + 平行四边形的判定与性质综合
- 利用平行四边形的判定与性质求解
- 利用平行四边形性质和判定证明
- 平行四边形性质和判定的实际应用
- 三角形中位线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下面是小明设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.
已知:平行四边形ABCD.
求作:点M,使点M 为边AB 的中点.
作法:如图,
①作射线DA;
②以点A 为圆心,BC长为半径画弧,
交DA的延长线于点E;
③连接EC 交AB于点M .
所以点M 就是所求作的点.

根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,EB.
∵四边形ABCD 是平行四边形,
∴AE∥BC.
∵AE= ,
∴四边形EBCA 是平行四边形( )(填推理的依据) .
∴AM =MB ( )(填推理的依据) .
∴点M 为所求作的边AB的中点.
已知:平行四边形ABCD.
求作:点M,使点M 为边AB 的中点.
作法:如图,
①作射线DA;
②以点A 为圆心,BC长为半径画弧,
交DA的延长线于点E;
③连接EC 交AB于点M .
所以点M 就是所求作的点.

根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,EB.
∵四边形ABCD 是平行四边形,
∴AE∥BC.
∵AE= ,
∴四边形EBCA 是平行四边形( )(填推理的依据) .
∴AM =MB ( )(填推理的依据) .
∴点M 为所求作的边AB的中点.
如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为 ▲ .

如图,△ABC中,AB=AC=6,
,点M在BC上,ME∥AC,交AB于点E,MF∥AB,交AC于点F,则四边形MEAF的周长是_______


在▱ABCD中,点E,F分别在边BC,AD上,且AF=C
A.![]() (Ⅰ)如图①,求证四边形AECF是平行四边形; (Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长. |