- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行四边形的性质
- 平行四边形的判定
- + 平行四边形的判定与性质综合
- 利用平行四边形的判定与性质求解
- 利用平行四边形性质和判定证明
- 平行四边形性质和判定的实际应用
- 三角形中位线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,
两点都在格点上,连结
,请完成下列作图:

(1)以
为对角线在图1中作一个正方形,且正方形各顶点均在格点上.
(2)以
为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.
(3)以
为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上.



(1)以

(2)以

(3)以

如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.
(1)若AH=3,HE=1,求△ABE的面积;
(2)若∠ACB=45°,求证:DF=
CG.
(1)若AH=3,HE=1,求△ABE的面积;
(2)若∠ACB=45°,求证:DF=


如图,在Rt△ABC中,∠B=90°,AB=5,∠C=30°,点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、E

A. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由; (3)当t为何值时,△DEF为直角三角形?请说明理由. |

如图,在平行四边形
中,
与
交于点
,点
在
上,
,
,
,点
是
的中点,若点
以
/秒的速度从点
出发,沿
向点
运动:点
同时以
/秒的速度从点
出发,沿
向点
运动,点
运动到
点时停止运动,点
也时停止运动,当点
运动( )秒时,以点
、
、
、
为顶点的四边形是平行四边形.































A.2 | B.3 | C.3或5 | D.4或5 |
如图,在▱ABCD中,O是对角线AC的中点,AB⊥AC,BC=4cm,∠B=60°,动点P从点B出发,以2cm/s的速度沿折线BC﹣CD向终点D运动,连结PO并延长交折线DA﹣AB于点Q,设点P的运动时间为t(s).
(1)当PQ与▱ABCD的边垂直时,求PQ的长;
(2)当t取何值时,以A,P,C,Q四点组成的四边形是矩形,并说明理由;
(3)当t取何值时,CQ所在直线恰好将▱ABCD的面积分成1:3的两部分.
(1)当PQ与▱ABCD的边垂直时,求PQ的长;
(2)当t取何值时,以A,P,C,Q四点组成的四边形是矩形,并说明理由;
(3)当t取何值时,CQ所在直线恰好将▱ABCD的面积分成1:3的两部分.

△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接B

A.![]() (1) 如图1,当点D在线段BC上时: ①求证:△AEB≌△ADC;②求证:四边形BCGE是平行四边形; (2)如图2,当点D在BC的延长线上,且CD=BC时,试判断四边形BCGE是什么特殊的四边形?并说明理由. |

已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、E

A. (1)求证:BD、EF互相平分; (2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积. |
