- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- + 平行四边形
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2) 当AP为何值时,四边形PMEN是菱形?并给出证明。
(1)求证:四边形PMEN是平行四边形;
(2) 当AP为何值时,四边形PMEN是菱形?并给出证明。

如图,▱ABCD的对角线AC、BD交于点O,E、F分别是AO、CO的中点,连接BE、DE、DF、BF,
(1)求证:四边形EBFD是平行四边形.
(2)求证:当AC=2BD时,四边形EBFD是矩形.
(1)求证:四边形EBFD是平行四边形.
(2)求证:当AC=2BD时,四边形EBFD是矩形.

如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于F,连接CF.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF为正方形,请你添加适当的条件并证明你的结论.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF为正方形,请你添加适当的条件并证明你的结论.

下列命题中,真命题是()
A.对角线相等的四边形是矩形 |
B.对角线互相垂直平分的四边形是菱形 |
C.一组对边平行,另一组对边相等的四边形是平行四边形 |
D.一组邻边相等,并且有一个内角为直角的四边形是正方形 |
将△ABC绕AC的中点O按顺时针旋转1800得到△CDA,请添加一个条件____________ ,使四边形ABCD为矩形(填一个即可).
如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )


A.∠DAB+∠ABC=180° | B.AB=BC |
C.AB=CD,AD=BC | D.∠ABC=∠ADC,∠BAD=∠BCD |
如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点

A. (I)试用含t的式子表示AE、AD、DF的长; (Ⅱ)如图①,连接EF,求证:四边形AEFD是平行四边形; (Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由. |

如图,将平行四边形ABCD的边DC延长至点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF;
(2)连接AC、BE,则当∠AFC与∠D满足什么条件时,四边形ABEC是矩形?请说明理由.
(1)求证:△ABF≌△ECF;
(2)连接AC、BE,则当∠AFC与∠D满足什么条件时,四边形ABEC是矩形?请说明理由.

已知,如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于

A. (1)求证:四边形AGBD为平行四边形; (2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?证明你的结论. |

下列命题中:
①对角线互相平分的四边形是平行四边形;
②对角线相等的四边形是矩形;
③一组对角相等,一组对边平行的四边形是平行四边形;
④对角线平分一组对角的平行四边形是菱形;
⑤对角线相等且互相垂直的四边形是正方形.
其中真命题有( )个
①对角线互相平分的四边形是平行四边形;
②对角线相等的四边形是矩形;
③一组对角相等,一组对边平行的四边形是平行四边形;
④对角线平分一组对角的平行四边形是菱形;
⑤对角线相等且互相垂直的四边形是正方形.
其中真命题有( )个
A.1 | B.2 | C.3 | D.4 |