- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- + 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=( )


A.![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
在△ABC中,AB=20,AC=13,BC边上的高AD=12,则△ABC的周长为 ( )
A.54 | B.44 | C.54或44 | D.53或43 |
如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是( )


A.360 | B.164 | C.400 | D.60 |
用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是196,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是 ( )


A.x+y=14 | B.x-y=2 | C.xy=48 | D.x2+y2=144. |
在如图的4×3网格中,每个小正方形的边长均为1,正方形顶点叫网格格点,连结两个网格格点的线段叫网格线段.
(1)请你画一个边长为
的菱形,并求其面积;
(2)若a是图中能用网格线段表示的最大无理数,b是图中能用网格线段表示的最小无理数,求a2-2b2的平方根.
(1)请你画一个边长为

(2)若a是图中能用网格线段表示的最大无理数,b是图中能用网格线段表示的最小无理数,求a2-2b2的平方根.

计算:
①已知:a+
=1+
,求a2+
的值.
②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.
①已知:a+



②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.

如图7,正方形①,②的一边在同一直线上,正方形③的一个顶点也在该直线上,且有两个顶点分别与正方形①,②的两个顶点重合,若正方形①,②的面积分别3cm2和4cm2,则正方形③的面积为_______cm2.
