- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- + 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,AB=5,BC=12,点E是BC边上一点,连接AE,将△ABE沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,
_____.


如图,在正方形
中,
,点E,F分别在
,
上,
,
,
相交于点








A.若图中阴影部分的面积与正方形![]() ![]() ![]() |

合肥地铁一号线与地铁二号线在A站交汇,且两条地铁线互相垂直如图所示,学校P到地铁一号线B站的距离PB=2km,到地铁二号线C站的距离PC为4km,PB与一号线的夹角为30°,PC与二号线的夹角为60°.求学校P到A站的距离(结果保留根号)

如图,在矩形
中,
,
,点
从点
出发沿
以2
的速度向点终点
运动,同时点
从点
出发沿
以1
的速度向点终点
运动,它们到达终点后停止运动.

(1)几秒后,点
、
的距离是点
、
的距离的2倍;
(2)几秒后,
的面积是24
.














(1)几秒后,点




(2)几秒后,


如图,在平行四边形ABCD中(BC>AB),过A作AF⊥BC,垂足为F,过C作CH⊥AB,垂足为H,交AF于G,点E为FC上一点,且GE⊥E
A.![]() (1)若FC=2BF=4,AB= ![]() (2)若AF=FC,F为BE中点,求证: ![]() |
如图,在矩形
中,
,
,点
从点
开始沿边
向终点
以
的速度移动,与此同时,点
从点
开始沿边
向终点
以
的速度移动.如果
分别从
同时出发,当点
运动到点
时,两点停止运动,设运动时间为
秒.

(1)填空:
__________,
_________;(用含
的代数式表示)
(2)当
为何值时,
的长度等于
?
(3)当
为何值时,五边形
的面积有最小值?最小值为多少?



















(1)填空:



(2)当



(3)当


已知菱形的周长为20 cm,两对角线长度比为3:4,则对角线长分别为( )
A.12cm.16cm | B.6cm,8cm | C.3cm,4cm | D.24cm,32cm |
已知,如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2点,D是AC中点,将△ABD沿BD所在直线折叠,使点A落在点P处,连接P

A. (1)写出BP,BD的长; (2)求证:四边形BCPD是平行四边形. |
