- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- + 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
将矩形纸片OABC放在平面直角坐标系中,0为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.
(1)如图①,当点Q恰好落在OB上时.求点p的坐标;
(2)如图②,当点P是AB中点时,直线OQ交BC于M点.
①求证:MB=MQ;②求点Q的坐标.
(1)如图①,当点Q恰好落在OB上时.求点p的坐标;
(2)如图②,当点P是AB中点时,直线OQ交BC于M点.
①求证:MB=MQ;②求点Q的坐标.

如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.

如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积.

如图,在Rt△ABC中,∠ACB=90°,点D为BC上的一点,将△ACD沿AD折叠,点C恰好落在边AB上的E处,且BD=4,CD=
.

(1)求BE的长;
(2)求AC的长.


(1)求BE的长;
(2)求AC的长.
如图,在平面直角坐标系中,已知点A(0,12),B(-5,0),连接A

A.将△AOB沿过点B的直线折叠,使点A落在x轴上的点![]() |

如图,△ABC中,∠C=90°,AC=6,AB=10,点D是边BC上一点.若沿AD将△ACD翻折,点C刚好落在AB边上点E处,则AD= _______.

