- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠A=90°,BC的中垂线DE交BC于E,交AC于D,若BC=13,AB=5,则△ABD的周长为( )


A.17 | B.18 | C.20 | D.23 |
定义:有两条边长的比值为
的直角三角形叫做“魅力三角形”我们知道,命题“直角三角形30°角所对的直角边等于斜边的一半”是一个真命题,所以“含30°角的直角三角形”就是一个“魅力三角形”
(1)设“魅力三角形”较短直角边为a,较长直角边为b,请你直接写出
的值.
(2)如图,在Rt△ABC中,∠B=90°,BC=6,D是AB的中点,点E在CD上,满足AD=DE,连结AE,过点D作DF∥AE交BC于点F
①如果点E是CD的中点,求证:△BDF是“魅力三角形”
②如果△BDF是“魅力三角形”,且BF=
BC,求线段AC的长
(二次根式运算提示:(
)2=n2(
)2=n2a,比如:(4
)2=42
(
)2=16×3=48)

(1)设“魅力三角形”较短直角边为a,较长直角边为b,请你直接写出

(2)如图,在Rt△ABC中,∠B=90°,BC=6,D是AB的中点,点E在CD上,满足AD=DE,连结AE,过点D作DF∥AE交BC于点F
①如果点E是CD的中点,求证:△BDF是“魅力三角形”
②如果△BDF是“魅力三角形”,且BF=

(二次根式运算提示:(





