- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分以的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()


A.12≤a≤13 | B.12≤a≤15 | C.5≤a≤12 | D.5≤a≤l3 |
已知,在等腰Rt△OAB中,∠OAB=900,OA=AB,点A,B在第四象限.
(1)①如图1,若A(1,-3),则OA= ; ②求点B的坐标;
(2)如图2,AD⊥y轴于点D,M为OB的中点,求证:
.

(1)①如图1,若A(1,-3),则OA= ; ②求点B的坐标;
(2)如图2,AD⊥y轴于点D,M为OB的中点,求证:



下列说法中,正确的个数有( )
①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为
;
②直角三角形的最大边长为
,最短边长为1,则另一边长为
;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;
④等腰三角形面积为12,底边上的高为4,则腰长为5.
①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为

②直角三角形的最大边长为


③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;
④等腰三角形面积为12,底边上的高为4,则腰长为5.
A.1个 | B.2个 | C.3个 | D.4个 |
[阅读]
在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为
[运用]
(1)如图,矩形ONEF的对角线相交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________;
(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C构成平行四边形的顶点,求点D的坐标.
在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为

[运用]
(1)如图,矩形ONEF的对角线相交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________;
(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C构成平行四边形的顶点,求点D的坐标.

如图,在△ABC中,∠C=90°,则下列结论正确的是( )


A.AB=AC+BC | B.AB=AC·BC | C.AB2=AC2+ BC2 | D.AC2=AB2+BC2 |