如图,点P、M、N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PV⊥AC于点N,若AB=12cm,求CM的长为______ cm.

如图,一艘轮船由海平面上的A地出发向南偏西45º的方向行驶50海里到达B地,再由B地向北偏西15º的方向行驶50海里到达C地,则A、C两地相距____海里.

如图,Rt△ABC中,∠B=90°,∠ACB=30°,BC=
,点D在边BC上,连接AD,在AD上方作等边三角形ADE,连接E


A. (1)求证:DE=CE; (2)若点D在BC延长线上,其他条件不变,直接写出DE,CE之间的数量关系(不必证明); (3)当点D从点B出发沿着线段BC运动到点C时,求点E的运动路径长. |

如图,∠AOB=60°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,OP=8,当△PMN周长取最小值时,△OMN的面积为_____.

(2017宁夏)在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.
(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;
(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.
(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;
(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.

学习与探究:
在等边△ABC中,P是射线AB上的一点.

(1)探索实践:
如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.
①求证:AD=BE;
②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)
③在②的条件下,求△CME与△ACM的面积之比.
(2)思维拓展:
如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.
在等边△ABC中,P是射线AB上的一点.

(1)探索实践:
如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.
①求证:AD=BE;
②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)
③在②的条件下,求△CME与△ACM的面积之比.
(2)思维拓展:
如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.
如图,以△ABC的边AB、AC为边向外作等边三角形△ABD与△ACE,线段BE交DC于点F,下列结论:①CD=BE;②FA平分∠BAC;③∠BFC=120°,④FA+FB=FD,其中正确有( )个.


A.4个 | B.3个 | C.2个 | D.1个 |