刷题首页
题库
初中数学
题干
如图,Rt△ABC中,∠B=90°,∠ACB=30°,BC=
,点D在边BC上,连接AD,在AD上方作等边三角形ADE,连接E
A.
(1)求证:DE=CE;
(2)若点D在BC延长线上,其他条件不变,直接写出DE,CE之间的数量关系(不必证明);
(3)当点D从点B出发沿着线段BC运动到点C时,求点E的运动路径长.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-20 12:39:12
答案(点此获取答案解析)
同类题1
如图,在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.
同类题2
如图,△ABC和△ECD都是等边三角形,B、C、D三点在一条直线上,AD与BE相交于点O,AD与CE相交于点F,AC与BE相交于点
A.
(1)△BCE与△ACD全等吗?请说明理由.
(2)求∠BOD度数.
同类题3
如图,已知△
ABC
,分别以
AB
、
AC
为边在△
ABC
的外部作等边三角形
ABD
和等边三角形
ACE
联结
DC
、
BE
试说明
DC
=
BE
的理由.
同类题4
已知:如图,
为
上一点,点
分别在
两侧.
,
,
.求证:
.
同类题5
如图,B、D、E在一条直线上,AB=AC,AD=AE,∠BAC=∠DAE,
(1)求证:BD=CE
(2)猜想∠1、∠2、∠3的数量关系,并说明理由.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
SAS
全等的性质和SAS综合