- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 等腰三角形的性质
- + 等腰三角形的判定
- 格点图中画等腰三角形
- 找出图中的等腰三角形
- 根据等角对等边证明等腰三角形
- 根据等角对等边证明边相等
- 根据等角对等边求边长
- 直线上与已知两点组成等腰三角形的点
- 求与图形中任意两点构成等腰三角形的点
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
满足下列条件的三角形:①内角比为1:2:1;②内角比为2:2:5;③内角比为1:1:1;④内角比为1:2:3,其中,是等腰三角形的有( )
A.4个 | B.3个 | C.2个 | D.1个 |
图1,图2是两张形状和大小完全相同的正方形网格纸,正方形网格中每个小正方形的边长为1,线段AC的两个端点均在小正方形的顶点上.

(1)在图1中画出△ABC,使△ABC是以AC为腰的等腰直角三角形,点B在小正方形的顶点上;
(2)在图2中画出△ADC,使△ADC是以AD为腰的等腰三角形,点D在小正方形的顶点上,且△ADC的面积为10.

(1)在图1中画出△ABC,使△ABC是以AC为腰的等腰直角三角形,点B在小正方形的顶点上;
(2)在图2中画出△ADC,使△ADC是以AD为腰的等腰三角形,点D在小正方形的顶点上,且△ADC的面积为10.
如图,已知在正方形网格中,每个小方格都是边长为1的正方形, A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为( )


A.7 | B.8 | C.9 | D.10 |
如图,线段AB=a,点P是AB中垂线MN上的一动点,过点P作直线CD∥A

A.若在直线CD上存在点Q使得△ABQ为等腰三角形,且满足条件的点Q有且只有3个,则PM的长为_____. |

对“等角对等边”这句话的理解,正确的是 ( )
A.只要两个角相等,那么它们所对的边也相等 |
B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等 |
C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等 |
D.以上说法都是错误的 |