- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 等腰三角形的性质
- + 等腰三角形的判定
- 格点图中画等腰三角形
- 找出图中的等腰三角形
- 根据等角对等边证明等腰三角形
- 根据等角对等边证明边相等
- 根据等角对等边求边长
- 直线上与已知两点组成等腰三角形的点
- 求与图形中任意两点构成等腰三角形的点
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在Rt
中,∠A=90°,AC=4,
,将
沿着斜边BC翻折,点A落在点
处,点D、E分别为边AC、BC的中点,联结DE并延长交
所在直线于点F,联结
,如果
为直角三角形时,那么
____________








图①、②、③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形边长为1,点A、C在格点上.在给定的网格中按要求画图,所面图形的顶点均在格点上.
(1)在图①中画出以AC为底边的等腰直角三角形ABC;
(2)在图②中画出以AC为腰的等腰三角形ACD,且△ACD的面积为8;
(3)在图③中作一个平行四边形ACMN,使平行四边形ACMN的面积为(1)中△ABC面积的2倍.
(1)在图①中画出以AC为底边的等腰直角三角形ABC;
(2)在图②中画出以AC为腰的等腰三角形ACD,且△ACD的面积为8;
(3)在图③中作一个平行四边形ACMN,使平行四边形ACMN的面积为(1)中△ABC面积的2倍.

请完成下面的几何探究过程:

(1)观察填空
如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则
①∠CBE的度数为____________;
②当BE=____________时,四边形CDBE为正方形.
(2)探究证明
如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:
①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;
②当CD⊥AB时,求证:四边形CDBE为矩形
(3)拓展延伸
如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.

(1)观察填空
如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则
①∠CBE的度数为____________;
②当BE=____________时,四边形CDBE为正方形.
(2)探究证明
如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:
①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;
②当CD⊥AB时,求证:四边形CDBE为矩形
(3)拓展延伸
如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.
如图的方格纸中,每一个小方格都是边长为1的正方形,找出格点C,使
成为等腰三角形,这样的格点C的个数有( )



A.8个 | B.9个 | C.10个 | D.11个 |
地面上铺设了长为20cm,宽为10cm的地砖,长方形地毯的位置如图所示.那么地毯的长度最接近多少?( )


A.50cm | B.100cm | C.150cm | D.200cm |
如图是由8个全等的小长方形组成的大正方形,线段AB的端点都在小长方形的顶点上,如果点P是某个小长方形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是( )


A.1个 | B.2个 | C.3个 | D.4个 |
如图,在4×4正方形网格中,每个小正方形的边长都是1,线段AB的端点在格点上,按要求画图.

⑴在图①中画出一个面积为4的等腰△ABC,点C在格点上;
⑵在图②中画出一个面积为5的Rt△ABD,点D在格点上.

⑴在图①中画出一个面积为4的等腰△ABC,点C在格点上;
⑵在图②中画出一个面积为5的Rt△ABD,点D在格点上.
如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上,从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t秒。

(1)点D在运动t秒后,BD= cm(用含有t的式子表示)
(2)AB= cm ,AB 边上的高为 cm ;
(3)点D在运动过程中,当△BCD为等腰三角形时,求t的值.

(1)点D在运动t秒后,BD= cm(用含有t的式子表示)
(2)AB= cm ,AB 边上的高为 cm ;
(3)点D在运动过程中,当△BCD为等腰三角形时,求t的值.