- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 等腰三角形的性质
- + 等腰三角形的判定
- 格点图中画等腰三角形
- 找出图中的等腰三角形
- 根据等角对等边证明等腰三角形
- 根据等角对等边证明边相等
- 根据等角对等边求边长
- 直线上与已知两点组成等腰三角形的点
- 求与图形中任意两点构成等腰三角形的点
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点
A.图中等腰三角形的个数为( )![]() | |||
B.4 | C.3 | D.2 | E.1 |
图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.


(1)在图1中画出△ABC,使△ABC为直角三角形(点C在小正方形的顶点上,画出一个即可);
(2)在图2中画出△ABD,使△ABD为等腰三角形(点D在小正方形的顶点上,画出一个即可).


(1)在图1中画出△ABC,使△ABC为直角三角形(点C在小正方形的顶点上,画出一个即可);
(2)在图2中画出△ABD,使△ABD为等腰三角形(点D在小正方形的顶点上,画出一个即可).
如图,已知Rt△ABC中,∠C=90º,∠A=30º,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()


A.5个 | B.6个 | C.7个 | D.8个 |
如图,网格中每个小正方形的边长均为1,线段AB的顶点在小正方形的顶点上,按要求画出图形.

(1)画一个以线段AB为底边的锐角等腰三角形ABC,使得点C在小正方形的顶点上;
(2)画出Rt△ABD和Rt△BCD使得△ABD和△BCD的面积相等,要求点D在小正方形的顶点上;
(3)直接写出线段AD的长.

(1)画一个以线段AB为底边的锐角等腰三角形ABC,使得点C在小正方形的顶点上;
(2)画出Rt△ABD和Rt△BCD使得△ABD和△BCD的面积相等,要求点D在小正方形的顶点上;
(3)直接写出线段AD的长.
如图,长方形ABCD中,AB=6,BC=2,直线l是长方形ABCD的一条对称轴,且分别与AD,BC交于点E,F,若直线l上的动点P,使得△PAB和△PBC均为等腰三角形.则动点P的个数有_______个. 

如图,长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,8),点B的坐标为(10,0),点E是BC边上一点,把长方形AOBC沿AE翻折后,C点恰好落在x轴上点F处.
(1)求点E、F的坐标;
(2)求AF所在直线的函数关系式;
(3)在x轴上求一点P,使△PAF成为以AF为腰的等腰三角形,请直接写出所有符合条件的点P的坐标.
(1)求点E、F的坐标;
(2)求AF所在直线的函数关系式;
(3)在x轴上求一点P,使△PAF成为以AF为腰的等腰三角形,请直接写出所有符合条件的点P的坐标.

在平面直角坐标系中,O是坐标原点,点A(3,2),点P(m,0)(m<6),若△POA是等腰三角形,则m可取的值最多有( )
A.2个 | B.3个 | C.4个 | D.5个 |