- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在平行四边形ABCD中,点E是AD边上的点,连接BE.

(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.

(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.
如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3

(1)求证:BN=DN;
(2)求△ABC的周长.

(1)求证:BN=DN;
(2)求△ABC的周长.
如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法:①
是等腰三角形,
;②折叠后
和
一定相等;③折叠后得到的图形是轴对称图形;④
和
一定是全等三角形.正确的是______(填序号).







已知△ABC是等边三角形,点D,E分别为边AB,AC上的点,且有AE=DB,连接DE,DC.

(1)如图1,若AB=6,∠DEC=90°,求△DEC的面积.
(2)M为DE中点,当D,E分别为AB、AC的中点时,判定CD,AM的数量关系并说明理由.
(3)如图2,M为DE中点,当D,E分别为AB,AC上的动点时,判定CD,AM的数量关系并说明理由.

(1)如图1,若AB=6,∠DEC=90°,求△DEC的面积.
(2)M为DE中点,当D,E分别为AB、AC的中点时,判定CD,AM的数量关系并说明理由.
(3)如图2,M为DE中点,当D,E分别为AB,AC上的动点时,判定CD,AM的数量关系并说明理由.
如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG.
(1)求证:△DCG≌△BEG;
(2)你能求出∠BDG的度数吗?若能,请写出计算过程;若不能,请说明理由.
(1)求证:△DCG≌△BEG;
(2)你能求出∠BDG的度数吗?若能,请写出计算过程;若不能,请说明理由.

如图,点
的坐标为
,
轴,垂足为
,
轴,垂足为
,点
分别是射线
、
上的动点,且点
不与点
、
重合,
.

(1)如图1,当点
在线段
上时,求
的周长;
(2)如图2,当点
在线段
的延长线上时,设
的面积为
,
的面积为
,请猜想
与
之间的等量关系,并证明你的猜想.














(1)如图1,当点



(2)如图2,当点







