- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.
(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;
(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;
(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.
(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;
(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;
(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.

已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在BC上,(不与B、C重合),FM⊥AD,交射线AD于点M.

(1)如图1,当点E在边BC的延长线上,点M在边AD上时,请直接写出线段AB,BE,AM之间的数量关系,不需要证明.
(2)如图2,当点E在边BC上,点M在边AD的延长线上时,请写出线段AB,BE,AM之间的数量关系,并且证明你的结论.
(3)如图3,当点E在边CB的延长线上,点M在边AD上时,若BE=
,∠AFM=15°,求AM的长度.

(1)如图1,当点E在边BC的延长线上,点M在边AD上时,请直接写出线段AB,BE,AM之间的数量关系,不需要证明.
(2)如图2,当点E在边BC上,点M在边AD的延长线上时,请写出线段AB,BE,AM之间的数量关系,并且证明你的结论.
(3)如图3,当点E在边CB的延长线上,点M在边AD上时,若BE=

如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.
(1)求证:AE=DF.
(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.
(3)如图3,连接CG.若CG=BC,则AF:FB的值为 .
(1)求证:AE=DF.
(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.
(3)如图3,连接CG.若CG=BC,则AF:FB的值为 .

已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.

如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.
(1)求证:AC=ED;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.
(1)求证:AC=ED;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.

已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.

(1)如图1,当点P与点Q重合时,AE与BF的位置关系是 ,QE与QF的数量关系式 ;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.

(1)如图1,当点P与点Q重合时,AE与BF的位置关系是 ,QE与QF的数量关系式 ;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.