- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知,∠CAB=∠DAE,AC=AD,增加下列条件:①AB=AE; ②BC=ED; ③∠C=∠D;④∠B=∠E;⑤∠1=∠2.其中能使△ABC≌△AED的条件有( )


A.2个 | B.3个 | C.4个 | D.5个 |
如图所示,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为公共边的全等三角形.请你参考这个作全等三角形的方法,解答下列问题.
(1)如图(2)所示,在∠ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F,请你写出FE与FD之间的数量关系;(不要求写证明)
(2)如图(3)所示,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,那么(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
(1)如图(2)所示,在∠ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F,请你写出FE与FD之间的数量关系;(不要求写证明)
(2)如图(3)所示,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,那么(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

如图,∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线,这种作法用到的三角形全等的判定方法是( )


A.SAS | B.ASA | C.SSS | D.HL |
如图,△ABC 的两条高AD,BE 相交于点F,若要用“ASA”证明△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是______.

在△ABC和△DEF中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,还需要的条件可以是( )
A.AB=EF | B.BC=EF | C.AB=AC | D.∠C=∠D |
不能判定两个三角形全等的条件是( )
A.三条边对应相等 | B.两条边及其夹角对应相等 |
C.两角及其中一角的对边对应相等 | D.两条边和一条边所对的角对应相等 |
如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B,D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为____.

如图,在△ABC中,∠ACB=900,AC=BC,BE⊥CE于点E,AD⊥CE于点D.
求证:(1)△BEC≌△CDA;
(2)若BE=2,CE=5,求DE.
求证:(1)△BEC≌△CDA;
(2)若BE=2,CE=5,求DE.
