- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
先阅读下面的知识,后解答后面的问题:
探究:如图,在△ABC中,已知∠B=∠C,求证:AB=AC.

证明:过点A作AD⊥BC,垂足为D, 在△ABD与△ACD中,
∠B=∠C, , , 所以△ABD≌△ACD( ),所以AB=AC.
(1)完成上述证明中的空白;
(2)已知如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CA

探究:如图,在△ABC中,已知∠B=∠C,求证:AB=AC.

证明:过点A作AD⊥BC,垂足为D, 在△ABD与△ACD中,
∠B=∠C, , , 所以△ABD≌△ACD( ),所以AB=AC.
(1)完成上述证明中的空白;
(2)已知如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CA
A.试问:AC+CD与AB相等吗?说明理由. |

如图,△ABC是等边三角形,点D是线段AC上的一动点,E在BC的延长线上,且BD=DE.
(1)如图1,若点D为线段AC的中点,求证:AD=CE;
(2)如图2,若点D为线段AC上任意一点,试确定线段AD与CE的大小关系,并说明理由.
(1)如图1,若点D为线段AC的中点,求证:AD=CE;
(2)如图2,若点D为线段AC上任意一点,试确定线段AD与CE的大小关系,并说明理由.

如图,等腰△ABC中,AB=AC,点D是AC上一动点,点E在BD的延长线上,且AB=AE,AF平分∠CAE交DE于F.

(1)如图1,连CF,求证:∠ABE=∠ACF;
(2)如图2,当∠ABC=60°时,求证:AF+EF=FB;
(3)如图3,当∠ABC=45°时,若BD平分∠ABC,求证:BD=2EF.

(1)如图1,连CF,求证:∠ABE=∠ACF;
(2)如图2,当∠ABC=60°时,求证:AF+EF=FB;
(3)如图3,当∠ABC=45°时,若BD平分∠ABC,求证:BD=2EF.