- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,点P、Q分别是BC、AC边上的点,PS
AC,PR
AB,若
,PR
PS,则下列结论:①PA平分
,②AS
AR;③QP∥AR;④△BRP≌△CPS;其中正确的结论有( )








A.4个 | B.3个 | C.2个 | D.1个 |
在等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为AC上一点,M为BC上一点.

(1)若AM⊥BP于点E.
①如图1,BP为△ABC的角平分线,求证:PA=PM;
②如图2,BP为△ABC的中线,求证:BP=AM+MP.
(2)如图3,若点N在AB上,AN=CP,AM⊥PN,求
的值.

(1)若AM⊥BP于点E.
①如图1,BP为△ABC的角平分线,求证:PA=PM;
②如图2,BP为△ABC的中线,求证:BP=AM+MP.
(2)如图3,若点N在AB上,AN=CP,AM⊥PN,求

已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,猜想AE与BD的数量关系与位置关系,并加以证明.
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.
(1)如图1,猜想AE与BD的数量关系与位置关系,并加以证明.
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.

如图,△ABC中,AB=AC,高BD、CE相交于点O,连接AO并延长交BC于点F,则图中全等的直角三角形共有( )


A.4对 | B.5对 | C.6对 | D.7对 |
如图,平面直角坐标系中,A是x轴负半轴上一定点,一动点B从原点出发,沿y轴正半轴运动,以B为直角顶点,作等腰直角三角形△ABC.

(1)若B点运动2秒钟,C点坐标为(2,-2),求A点的坐标;
(2)如图,B点从(1)中的位置出发保持运动速度不变,再运动2秒钟.E在原B点上,连AE,OD⊥AE,交x轴的平行线DB于D点,求D点坐标

(3)点B从(2)的位置出发继续运动,如图AC交y轴于M,MN⊥y轴,且BM=MN,连CN,试问:AB和CN是否有某种确定的位置关系,并证明.

(1)若B点运动2秒钟,C点坐标为(2,-2),求A点的坐标;
(2)如图,B点从(1)中的位置出发保持运动速度不变,再运动2秒钟.E在原B点上,连AE,OD⊥AE,交x轴的平行线DB于D点,求D点坐标

(3)点B从(2)的位置出发继续运动,如图AC交y轴于M,MN⊥y轴,且BM=MN,连CN,试问:AB和CN是否有某种确定的位置关系,并证明.

如图, AB=CB, BD=BE, ∠ABC=∠DBE=α.



(1)当α=60°, 如图则,∠DPE的度数______________
(2)若△BDE绕点B旋转一定角度,如图所示,求∠DPE(用α表示)
(3)当α=90°,其他条件不变,F为AD的中点,求证:EC ⊥ BF



(1)当α=60°, 如图则,∠DPE的度数______________
(2)若△BDE绕点B旋转一定角度,如图所示,求∠DPE(用α表示)
(3)当α=90°,其他条件不变,F为AD的中点,求证:EC ⊥ BF
如图,在△ABC中,∠BAC=90°,AB=AC,分别过点B、C两点作过点A的直线的垂线,垂足为M、N.

(1)如图1,当M、N两点在直线BC的同侧时,求证:BM+CN=MN;
(2)如图2,当M、N两点在直线BC的两侧时,BM、CN、MN三条线段的数量关系并证明.

(1)如图1,当M、N两点在直线BC的同侧时,求证:BM+CN=MN;
(2)如图2,当M、N两点在直线BC的两侧时,BM、CN、MN三条线段的数量关系并证明.