- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形ABCD中,AB=4,点E是BA延长线上一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有( )个
①MC⊥ND;②sin∠MFC=
;③(BM+DG)²=AM²+AG²;④S△HMF=

①MC⊥ND;②sin∠MFC=



A.1 | B.2 | C.3 | D.4 |
问题提出:
(1)如图①,若正方形
的边长为6,点
分别为边
上的点,且
,
与
交于点
,连接
,则
;
问题探究:
(2)如图②,
,
是等腰直角三角形,顶点
分别在
的两边上,试说明点
在
的平分线上;
问题解决:
(3)如图③,
,
是等边三角形,顶点
分别在
的两边上,点
在
上,且
,连接
,求
的最小值.
(1)如图①,若正方形









问题探究:
(2)如图②,






问题解决:
(3)如图③,










如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG.
(1)求证:△DCG≌△BEG;
(2)你能求出∠BDG的度数吗?若能,请写出计算过程;若不能,请说明理由.
(1)求证:△DCG≌△BEG;
(2)你能求出∠BDG的度数吗?若能,请写出计算过程;若不能,请说明理由.

如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )


A.![]() | B.2 | C.![]() | D.3 |
如图,点
的坐标为
,
轴,垂足为
,
轴,垂足为
,点
分别是射线
、
上的动点,且点
不与点
、
重合,
.

(1)如图1,当点
在线段
上时,求
的周长;
(2)如图2,当点
在线段
的延长线上时,设
的面积为
,
的面积为
,请猜想
与
之间的等量关系,并证明你的猜想.














(1)如图1,当点



(2)如图2,当点







