- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,BD的垂直平分线交AD于E,交BC于F,连接BE 、D
A.![]() (1)判断四边形BEDF的形状,并说明理由; (2)若AB=8,AD=16,求BE的长. |
如图,在长方形ABCD中,点E是AD的中点,连接CE,将△CDE沿着CE翻折得到△CFE,EF交BC于点G,CF的延长线交AB的延长线于点H,若AH=25,BC=40,则FG=_____.

如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=4,S3=12,则S2的值为( )


A.16 | B.24 | C.48 | D.64 |
如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是( )


A.BM>DN | B.BM<DN | C.BM=DN | D.无法确定 |
如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=

(1)求证:F是DC的中点.
(2)求证:AE=4C


(1)求证:F是DC的中点.
(2)求证:AE=4C
A. (3)求图中阴影部分的面积. |
如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )


A.60° | B.65° | C.55° | D.50° |
探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.
(1)求证:△ACN≌△CBM;
(2)∠CPN= °;(给出求解过程)
(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)
(4)图③中∠CPN= °;(直接写出答案)
(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n的代数式表示,直接写出答案).

(1)求证:△ACN≌△CBM;
(2)∠CPN= °;(给出求解过程)
(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)
(4)图③中∠CPN= °;(直接写出答案)
(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n的代数式表示,直接写出答案).

在平行四边形ABCD中,点E是AD边上的点,连接BE.

(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.

(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.
在
中,
,点
是
的中点,连接
.
(1)如图1,若
,求
的长度;
(2)如图2,过点
作
于点
.求证:
.
(3)如图2,在(2)的条件下,当
时,求
的值.






(1)如图1,若


(2)如图2,过点




(3)如图2,在(2)的条件下,当


如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3

(1)求证:BN=DN;
(2)求△ABC的周长.

(1)求证:BN=DN;
(2)求△ABC的周长.