- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在正方形
中,点
、
为边
和
上的动点(不含端点),
.下列三个结论:①当
时,则
;②
;③
的周长不变,其中正确结论的个数是( )












A.0 | B.1 |
C.2 | D.3 |
如图,边长为a的正方形ABCD被两条与边平行的线段EF、GH分割成四个小矩形,EF与GH交于点P,连接AF、AH、FH.
(1)如图1,若a=1,AE=AG=
,求FH的值;
(2)如图2,若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBF的周长l=a,求矩形EPHD的面积S与l的关系(只写结果,不写过程).
(1)如图1,若a=1,AE=AG=

(2)如图2,若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBF的周长l=a,求矩形EPHD的面积S与l的关系(只写结果,不写过程).

如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接ED,则DE的长度是_____,B′D的最小值是_____.

勾股定理是数学史上非常重要的一个定理.早在
多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以
的三边为边长,向外作正方形
、
、
.

(1)连接
、
,求证:
(2)过点
作
的垂线,交
于点
,交
于点
.
①试说明四边形
与正方形
的面积相等;
②请直接写出图中与正方形
的面积相等的四边形.
(3)由第(2)题可得:正方形
的面积
正方形
的面积
_______________的面积,即在
中,
__________________.






(1)连接



(2)过点






①试说明四边形


②请直接写出图中与正方形

(3)由第(2)题可得:正方形





