- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )



A.90° | B.95° | C.100° D. 105° |
用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为( )
A.4cm | B.6cm | C.4cm或6cm | D.4cm或8cm |
为了比较
+1与
的大小,小伍和小陆两名同学对这个问题分别进行了研究.
(1)小伍同学利用计算器得到了
,
,所以确定
+1
(填“>”或“<”或“=”)
(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对
+1和
的大小做出准确的判断.


(1)小伍同学利用计算器得到了




(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对



已知
是一张直角三角形纸片,其中
,
,小亮将它绕点
逆时针旋转后
得到
,
交直线
于点
.

(1)如图1,当
时,
所在直线与线段
有怎样的位置关系?请说明理由.
(2)如图2,当
,求
为等腰三角形时的度数.










(1)如图1,当



(2)如图2,当


已知等边△ABC,点D为BC上一点,连接AD.

图1 图2
(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;
(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.

图1 图2
(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;
(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.
如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4
,过点C作CE⊥BD交BD的延长线于E,则CE的长为( )



A.![]() | B.2![]() | C.3![]() | D.2![]() |
如图,点C为线段AB上一点,且CB=1,分别以AC、BC为边,在AB的同一侧作等边△ACD和等边△CBE,连接DE,AE,∠CDE=30°,则△ADE的面积为_____.

如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是( )


A.△ABD≌△ECD |
B.连接BE,四边形ABEC为平行四边形 |
C.DA=DE |
D.CE=CA |
在△ABC中,AB=AC=10,D为BC边上的中点,BD=6,连接A

A. (1)尺规作图:作AC边的中垂线交AD于点P;(保留作图痕迹,不要求写作法和证明) (2)连接CP,求△DPC的周长. |
