- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行线的性质
- 平行线性质的应用
- + 平行线的判定与性质
- 根据平行线判定与性质求角度
- 根据平行线判定与性质证明
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D ∠E(用“>”、“=”或“<”填空);
(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.
(3)灵活应用:如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.
(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.
(3)灵活应用:如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.

如图,下列推理所注理由正确的是( )


A.∵DE∥BC,∴∠1=∠C(同位角相等,两直线平行) |
B.∵∠2=∠3,∴DE∥BC(两直线平行,内错角相等) |
C.∵DE∥BC,∴∠2=∠3(两直线平行,内错角相等) |
D.∵∠DEC+∠C=180°,∴DE∥BC(同旁内角相等,两直线平行) |
如图,已知AD⊥DF,EC⊥DF,∠1=∠3,∠2=∠4,求证:AE∥DF.(请在下面的解答过程的空格内填空或在括号内填写理由)

证明:∵AD⊥DF,EC⊥DF,(已知)
∴∠BFD=∠ADF=90°.( )
∴EC∥( )
∴∠EBA=_____(两直线平行,内错角相等)
∵∠2=∠4,(已知)
∴∠EBA=∠4.(等量代换)
∴AB∥_____.( )
∴∠2+∠ADC=180°.( )
∴∠2+∠ADF+∠3=180°.
∵∠1=∠3.(已知)
∴∠2+∠ADF+∠1=180°.(等量代换)
∴_____+∠ADF=180°.
∴AE∥DF.( )

证明:∵AD⊥DF,EC⊥DF,(已知)
∴∠BFD=∠ADF=90°.( )
∴EC∥( )
∴∠EBA=_____(两直线平行,内错角相等)
∵∠2=∠4,(已知)
∴∠EBA=∠4.(等量代换)
∴AB∥_____.( )
∴∠2+∠ADC=180°.( )
∴∠2+∠ADF+∠3=180°.
∵∠1=∠3.(已知)
∴∠2+∠ADF+∠1=180°.(等量代换)
∴_____+∠ADF=180°.
∴AE∥DF.( )