- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 角的概念
- 钟面角
- 角的度量
- 角的比较
- + 角平分线
- 角平分线的有关计算
- 角n等分线的有关计算
- 与角平分线有关的证明
- 余角和补角
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()


A.80° | B.90° | C.100° | D.110° |
如图,在△ABC中,∠ABC=50°,∠ACB=70°,AD平分∠BAC.过点D作DE⊥AB于点E,则∠ADE的度数是( )


A.45° | B.50° C.60° | C.70° |
如图,CA平分∠DCE,且与BE的延长线相交于点

A. (1)若∠A=35°,∠B=30°,则∠BEC= ;(直接在横线上填写度数) (2)小明经过改变∠A,∠B的度数进行多次探究,得出∠A,∠B,∠BEC三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明. |

如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FM
A.![]() (1)直线AB与直线CD是否平行,说明你的理由; (2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β. ①当点G在点F的右侧时,若β=60°,求α的度数; ②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明. |
如图1,在同一平面内,四条线AB、BC、CD、DA首尾顺次相接,AD、BC相交于点O,AM、CN分别是∠BAD和∠BCD的平分线,∠B=α,∠D=β.

(1)如图2,AM、CN相交于点P.
①当α=β时,判断∠APC与α的大小关系,并说明理由.
②当α>β时,请直接写出∠APC与α,β的数量关系.
(2)是否存在AM∥CN的情况?若存在,请判断并说明α,β的数量关系;若不存在,请说明理由.

(1)如图2,AM、CN相交于点P.
①当α=β时,判断∠APC与α的大小关系,并说明理由.
②当α>β时,请直接写出∠APC与α,β的数量关系.
(2)是否存在AM∥CN的情况?若存在,请判断并说明α,β的数量关系;若不存在,请说明理由.
AD是△BAC的角平分线,过D向AB、AC两边作垂线,垂足为E、F,则下列错误的是( )
A.DE=DF | B.AE=AF | C.BD=CD | D.∠ADE=∠ADF |
如图,在△ABC 中,AD 是△ABC 的角平分线,DE ^AB ,DF ^AC ,垂足分别是E ,F .求证:DA 平分ÐEDF
