- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- + 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
三江夜游项目是宁波市月光经济和“三江六岸”景观提升的重要工程,一艘游轮从周宿夜江游船码头到宁波大剧院游船码头顺流而行用40分钟,从宁波大剧院游船码头沿原线返回周宿夜江游船码头用了1小时,已知游轮在静水中的平均速度为8千米/小时,求水流的速度.设水流的速度为x千米/小时,则可列方程为( )
A.40(8-x)=1×(8+x) ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() |
甲、乙两名运动员在圆形跑道上从
点同时出发,并按相反方向匀速跑步,甲的速度为每秒6米,乙的速度为每秒7米,当他们第一次在
点再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇次数是( )


A.13 | B.14 | C.42 | D.43 |
已知
、
两地相距400千米,甲、乙两车从
地向
地运送货物,甲车的速度为每小时60千米,乙车的速度为每小时80千米,甲车先出发0.5小时后乙车才开始出发.
(1)乙车出发几小时后,才能追上甲车?
(2)若乙车到达
地后,立即原路返回
地,则乙车返回时再经过多少小时与甲车再次相遇?




(1)乙车出发几小时后,才能追上甲车?
(2)若乙车到达


小明每分钟走90步,小亮每分钟走60步,小明和小亮两人从同一地点出发,且两人的步长相等,若小亮先走100步,然后小明去追赶,则小明要走____步才能追到小亮.
运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min后小林第一次与爷爷相遇,小林跑步的速度是( )米/分.
A.120 | B.160 | C.180 | D.200 |
小林从学校出发去世博园游玩,早上去时以每小时5千米速度行进,中午以每小时4千米速度沿原路返校.结果回校时间比去时所用的时间多20分钟,问小林学校与世博园之间的路程是多少?设小林学校离世博园
千米,那么所列方程是( )

A.![]() | B.![]() | C.![]() | D.![]() |
某人骑车以每小时12千米的速度由
地到
地,这样便可以在规定时间到达
地,但他因事将原计划出发时间推迟了20分钟,便以每小时15千米的速度前进,结果比规定时间早4分钟到达
地,
,
两地的距离为__________千米.






(背景知识)
数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a-b|,若a>b,则可简化为AB=a-b;线段AB的中点M表示的数为
.
(问题情境)
已知数轴上有A、B两点,分别表示的数为-10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).

(综合运用)
(1)运动开始前,A、B两点的距离为______;线段AB的中点M所表示的数______.
(2)点A运动t秒后所在位置的点表示的数为______;点B运动t秒后所在位置的点表示的数为______;(用含t的式子表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?
(4)若A,B按上述方式运动,直接写出中点M的运动方向和运动速度.
数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a-b|,若a>b,则可简化为AB=a-b;线段AB的中点M表示的数为

(问题情境)
已知数轴上有A、B两点,分别表示的数为-10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).

(综合运用)
(1)运动开始前,A、B两点的距离为______;线段AB的中点M所表示的数______.
(2)点A运动t秒后所在位置的点表示的数为______;点B运动t秒后所在位置的点表示的数为______;(用含t的式子表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?
(4)若A,B按上述方式运动,直接写出中点M的运动方向和运动速度.
小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑
,两人的运动手环记录时间和步数如下:
(1)表格中
表示的结束时间为 ,
;
(2)小莉和她爸爸两人每步分别跑多少米?
(3)渡江胜利纪念馆到绿博园的路程是多少米?

| 出发 | 途中 | 结束 |
时间 | ![]() | ![]() | ![]() |
小莉的步数 | 1308 | 3183 | 8808 |
| 出发 | 途中 | 结束 |
时间 | ![]() | ![]() | ![]() |
爸爸的步数 | 2168 | 4168 | ![]() |
(1)表格中


(2)小莉和她爸爸两人每步分别跑多少米?
(3)渡江胜利纪念馆到绿博园的路程是多少米?
常家庄园位于我区东阳镇车辆村,常家被誉为“儒商世家”.国庆期间,小兰一家三口准备骑车去欣赏这所规模宏大的民居建筑群,进一步了解晋商文化.出发时小兰的爸爸临时有事,让小兰和妈妈先出发,她俩骑行速度为
.她俩出发半小时后,爸爸立即以
的骑行速度去追她们,并且在途中追上了她们.请问爸爸追上小兰用了多长时间?


