- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 演绎推理概念辨析
- 大前提、小前提、结论的判断
- 三段论运用错误的分析
- 用三段论证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列表述正确的是( )
①归纳推理是由特殊到一般的推理;②演绎推理是由一般到特殊的推理;
③类比推理是由特殊到一般的推理;④分析法是一种间接证明法;
①归纳推理是由特殊到一般的推理;②演绎推理是由一般到特殊的推理;
③类比推理是由特殊到一般的推理;④分析法是一种间接证明法;
A.②④ | B.①③ | C.①④ | D.①② |
下列表述正确的是( )
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;
③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;
⑤类比推理是由特殊到特殊的推理.
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;
③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;
⑤类比推理是由特殊到特殊的推理.
A.①④⑤ | B.②③④ | C.②③⑤ | D.①⑤ |
《论语·子路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足”,所以,名不正,则民无所措手足.上述推理过程用的是( )
A.类比推理 | B.归纳推理 | C.演绎推理 | D.合情推理 |
下面几种推理是演绎推理的个数是( )
①两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°;
②猜想数列1,3,5,7,9,11,…的通项公式为
;
③由正三角形的性质得出正四面体的性质;
④半径为
的圆的面积
,则单位圆的面积
.
①两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°;
②猜想数列1,3,5,7,9,11,…的通项公式为

③由正三角形的性质得出正四面体的性质;
④半径为



A.1个 | B.2个 | C.3个 | D.4个 |
下列说法:①归纳推理是合情推理;②类比推理不是合情推理;③演绎推理在前提和推理形式都正确的前提下,得到的结论是正确的.其中正确说法的个数为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某个命题与正整数n有关,如果当
时命题成立,那么可推得当
时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )


A.当n=7时该命题不成立 | B.当n=7时该命题成立 |
C.当n=9时该命题不成立 | D.当n=9时该命题成立 |